9129767 I6QB6LWB 1 apa 50 date desc year Hao, X. 18 https://x3hao.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%2222HCR3DH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%22%2C%22parsedDate%22%3A%222024-10-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%20%282024%29.%20Quantifying%20Bioluminescent%20Light%20Intensity%20in%20Breaking%20Waves%20Using%20Numerical%20Simulations.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2820%29%2C%20e2024GL110884.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110884%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110884%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Quantifying%20Bioluminescent%20Light%20Intensity%20in%20Breaking%20Waves%20Using%20Numerical%20Simulations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Breaking%5Cu2010wave%20induced%20bioluminescence%20is%20a%20critical%20component%20of%20the%20biogeochemical%20process%20in%20the%20ocean.%20Understanding%20bioluminescence%20is%20important%20for%20monitoring%20red%20tides%20caused%20by%20bioluminescent%20microorganisms.%20In%20this%20study%2C%20we%20present%20the%20first%20numerical%20effort%20to%20quantify%20bioluminescent%20light%20intensity%20based%20on%20high%5Cu2010fidelity%20direct%20numerical%20simulations%20of%20breaking%20waves%20and%20a%20quantitative%20bioluminescent%20model.%20The%20dynamics%20of%20breaking%20waves%20are%20extensively%20validated%20through%20comparison%20with%20existing%20studies.%20We%20find%20that%20the%20time%5Cu2010averaged%20and%20Lagrangian%5Cu2010averaged%20shear%20stress%20saturates%20as%20surface%20tension%20effects%20decrease%20and%20wave%20steepness%20increases.%20The%20spatial%20distribution%20of%20light%20intensity%20correlates%20with%20the%20wave%20crest%20overturning%20and%20air%20bubbles%20generated%20in%20plunging%20breakers.%20Furthermore%2C%20we%20observe%20that%20the%20maximum%20light%20intensity%20asymptotically%20approaches%20the%20emission%20of%20single%20cells%2C%20suggesting%20the%20potential%20for%20cost%5Cu2010effective%20prediction%20models%20in%20future%20studies.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Marine%20microorganisms%2C%20such%20as%20dinoflagellates%2C%20flash%20when%20stimulated%20by%20mechanical%20forces%20caused%20by%20breaking%20waves.%20Understanding%20this%20phenomenon%2C%20also%20known%20as%20the%20%5Cu2018blue%20tears%5Cu2019%20of%20ocean%2C%20is%20helpful%20for%20predicting%20%5Cu2018red%20tides%5Cu2019%2C%20a%20hazardous%20algal%20blooms%20caused%20by%20dinoflagellates.%20We%20use%20computer%20simulations%20to%20determine%20how%20much%20light%20is%20emitted%20when%20breaking%20waves%20stimulates%20bioluminescence.%20Our%20analysis%20show%20that%20there%20is%20an%20upper%20limit%20for%20the%20level%20of%20the%20mechanical%20force%20in%20breaking%20waves.%20We%20also%20find%20that%20the%20maximum%20bioluminescence%20light%20intensity%20is%20similar%20to%20that%20emitted%20by%20a%20single%20cell.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20numerical%20framework%20is%20developed%20to%20quantify%20bioluminescence%20stimulated%20by%20ocean%20surface%20breaking%20waves%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20time%5Cu2010averaged%20and%20Lagrangian%5Cu2010averaged%20shear%20stress%20saturates%20as%20surface%20tension%20effects%20decrease%20and%20wave%20steepness%20increases%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Maximum%20bioluminescent%20light%20intensity%20asymptotically%20approaches%20single%20cell%20emission%20at%20the%20time%20of%20flashing%22%2C%22date%22%3A%222024-10-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024GL110884%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024GL110884%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222024-10-21T17%3A24%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22YUIAHVB7%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wu%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWu%2C%20J.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Li%2C%20T.%2C%20%26amp%3B%20Shen%2C%20L.%20%282023%29.%20Adjoint-based%20high-order%20spectral%20method%20of%20wave%20simulation%20for%20coastal%20bathymetry%20reconstruction.%20%3Ci%3EJournal%20of%20Fluid%20Mechanics%3C%5C%2Fi%3E%2C%20%3Ci%3E972%3C%5C%2Fi%3E%2C%20A41.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2023.733%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2023.733%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Adjoint-based%20high-order%20spectral%20method%20of%20wave%20simulation%20for%20coastal%20bathymetry%20reconstruction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jie%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tianyi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22Bathymetry%20is%20an%20important%20factor%20affecting%20wave%20propagation%20in%20coastal%20environments%20but%20is%20often%20challenging%20to%20measure%20in%20practice.%20We%20propose%20a%20method%20for%20inferring%20coastal%20bathymetry%20from%20spatial%20variations%20in%20surface%20waves%20by%20combining%20a%20high-order%20spectral%20method%20for%20wave%20simulation%20and%20an%20adjoint-based%20variational%20data%20assimilation%20method.%20Recursion-formed%20adjoint%20equations%20are%20derived%20to%20obtain%20the%20sensitivity%20of%20the%20wave%20surface%20elevation%20to%20the%20underlying%20bottom%20topography%20to%20any%20desired%20order%20of%20nonlinear%20perturbation.%20We%20also%20develop%20a%20multiscale%20optimisation%20method%20to%20eliminate%20spurious%20high-wavenumber%20fluctuations%20in%20the%20reconstructed%20bathymetry%20data%20caused%20by%20sensitivity%20variations%20over%20the%20different%20length%20scales%20of%20surface%20waves.%20The%20proposed%20bottom%20detection%20method%20is%20validated%20with%20a%20realistic%20coastal%20wave%20environment%20involving%20complex%20two-dimensional%20bathymetry%20features%2C%20non-periodic%20incident%20waves%20and%20nonlinear%20broadband%20multidirectional%20waves.%20In%20numerical%20experiments%20at%20both%20laboratory%20and%20field%20scales%2C%20the%20bathymetry%20reconstructed%20from%20our%20method%20agrees%20well%20with%20the%20ground%20truth.%20We%20also%20show%20that%20our%20method%20is%20robust%20against%20imperfect%20surface%20wave%20data%20in%20the%20presence%20of%20limited%20sampling%20frequency%20and%20noise.%22%2C%22date%22%3A%222023-10-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fjfm.2023.733%22%2C%22ISSN%22%3A%220022-1120%2C%201469-7645%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS0022112023007334%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222024-02-21T23%3A50%3A27Z%22%7D%7D%2C%7B%22key%22%3A%225HGISCDF%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20Z.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Santoni%2C%20C.%2C%20Shen%2C%20L.%2C%20Sotiropoulos%2C%20F.%2C%20%26amp%3B%20Khosronejad%2C%20A.%20%282023%29.%20Toward%20prediction%20of%20turbulent%20atmospheric%20flows%20over%20propagating%20oceanic%20waves%20via%20machine-learning%20augmented%20large-eddy%20simulation.%20%3Ci%3EOcean%20Engineering%3C%5C%2Fi%3E%2C%20%3Ci%3E280%3C%5C%2Fi%3E%2C%20114759.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.oceaneng.2023.114759%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.oceaneng.2023.114759%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Toward%20prediction%20of%20turbulent%20atmospheric%20flows%20over%20propagating%20oceanic%20waves%20via%20machine-learning%20augmented%20large-eddy%20simulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zexia%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Santoni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fotis%22%2C%22lastName%22%3A%22Sotiropoulos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ali%22%2C%22lastName%22%3A%22Khosronejad%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2207%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.oceaneng.2023.114759%22%2C%22ISSN%22%3A%2200298018%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0029801823011435%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222024-02-21T23%3A51%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22W8HJT3NK%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yue%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYue%2C%20L.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Shen%2C%20L.%2C%20%26amp%3B%20Fringer%2C%20O.%20B.%20%282023%29.%20Direct%20Simulation%20of%20the%20Surface%20Manifestation%20of%20Internal%20Gravity%20Waves%20with%20a%20Wave%26%23x2013%3BCurrent%20Interaction%20Model.%20%3Ci%3EJournal%20of%20Physical%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E53%3C%5C%2Fi%3E%284%29%2C%20981%26%23x2013%3B993.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-22-0097.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-22-0097.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Direct%20Simulation%20of%20the%20Surface%20Manifestation%20of%20Internal%20Gravity%20Waves%20with%20a%20Wave%5Cu2013Current%20Interaction%20Model%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liangyi%22%2C%22lastName%22%3A%22Yue%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oliver%20B.%22%2C%22lastName%22%3A%22Fringer%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Internal%20solitary%20waves%20in%20the%20ocean%20are%20characterized%20by%20the%20surface%20roughness%20signature%20of%20smooth%20and%20rough%20bands%20that%20are%20observable%20in%20synthetic%20aperture%20radar%20satellite%20imagery%2C%20which%20is%20caused%20by%20the%20interaction%20between%20surface%20gravity%20waves%20and%20internal%20wave%5Cu2013induced%20surface%20currents.%20In%20this%20work%2C%20we%20study%20the%20surface%20signature%20of%20an%20internal%20wave%20packet%20in%20deep%20water%20over%20a%20large%20range%20of%20spatial%20scales%20using%20an%20improved%20wave%5Cu2013current%20interaction%20model%20that%20supports%20a%20moving%20surface%20current%20corresponding%20to%20a%20propagating%20internal%20gravity%20wave.%20After%20validating%20the%20model%20by%20comparison%20to%20previously%20published%20numerical%20results%20by%20Hao%20and%20Shen%2C%20we%20investigate%20a%20realistic%20case%20based%20on%20a%20recent%20comprehensive%20field%20campaign%20conducted%20by%20Lenain%20and%20Pizzo.%20Distinct%20surface%20manifestation%20caused%20by%20internal%20waves%20can%20be%20directly%20observed%20from%20the%20surface%20waves%20and%20the%20associated%20surface%20wave%20steepness.%20Consistent%20with%20observations%2C%20the%20surface%20is%20relatively%20rough%20where%20the%20internal%20wave%5Cu2013induced%20surface%20current%20is%20convergent%20%28%5Cu2202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20U%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cu2202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3C%200%29%2C%20while%20it%20is%20relatively%20smooth%20where%20the%20surface%20current%20is%20divergent%20%28%5Cu2202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20U%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cu2202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3E%200%29.%20The%20spatial%20modulation%20of%20the%20surface%20wave%20spectrum%20is%20rapid%20as%20a%20function%20of%20along-propagation%20distance%2C%20showing%20a%20remarkable%20redistribution%20of%20energy%20under%20the%20influence%20of%20the%20propagating%20internal%20wave%20packet.%20The%20directional%20wavenumber%20spectra%20computed%20in%20the%20smooth%20and%20rough%20regions%20show%20that%20the%20directional%20properties%20of%20the%20surface%20wave%20spectra%20are%20also%20rapidly%20modulated%20through%20strong%20wave%5Cu2013current%20interactions.%20Good%20agreement%20is%20found%20between%20the%20model%20results%20and%20the%20field%20observations%2C%20demonstrating%20the%20robustness%20of%20the%20present%20model%20in%20studying%20the%20impact%20of%20internal%20waves%20on%20surface%20gravity%20waves.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20purpose%20of%20this%20study%20is%20to%20better%20understand%20the%20physical%20processes%20leading%20to%20the%20bands%20of%20rough%20and%20smooth%20surface%20waves%20arising%20from%20internal%20gravity%20waves.%20The%20surface%20manifestation%20of%20internal%20gravity%20waves%20allows%20them%20to%20be%20measured%20remotely%20via%20surface%20imagery%2C%20which%20can%20provide%20insight%20into%20their%20nonlinear%20behavior%20and%20sources%20and%20fate%20and%20which%20can%20ultimately%20inform%20the%20local%20stratification%20for%20assimilation%20into%20larger-scale%20models.%20Our%20results%20highlight%20the%20application%20of%20wave%5Cu2013current%20interaction%20models%20to%20the%20study%20of%20the%20interaction%20of%20surface%20waves%20with%20internal%20gravity%20waves%20and%20indicate%20strong%20modulation%20of%20the%20surface%20wave%20spectra%20over%20relatively%20short%20time%20scales%20despite%20the%20long%20time%20scales%20associated%20with%20the%20internal%20wave%20propagation.%22%2C%22date%22%3A%2204%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJPO-D-22-0097.1%22%2C%22ISSN%22%3A%220022-3670%2C%201520-0485%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fphoc%5C%2F53%5C%2F4%5C%2FJPO-D-22-0097.1.xml%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222024-02-21T23%3A52%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22XM75B8VB%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20and%20Shen%22%2C%22parsedDate%22%3A%222022-09-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20Large-eddy%20simulation%20of%20gusty%20wind%20turbulence%20over%20a%20travelling%20wave.%20%3Ci%3EJournal%20of%20Fluid%20Mechanics%3C%5C%2Fi%3E%2C%20%3Ci%3E946%3C%5C%2Fi%3E%2C%20A8.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2022.577%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2022.577%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large-eddy%20simulation%20of%20gusty%20wind%20turbulence%20over%20a%20travelling%20wave%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22Wind%20gustiness%20in%20the%20marine%20atmospheric%20boundary%20layer%20affects%20significantly%20the%20dynamics%20of%20air%5Cu2013sea%20interaction.%20To%20understand%20the%20impacts%20of%20wind%20gust%20events%2C%20we%20perform%20large-eddy%20simulation%20of%20wind%20turbulence%20over%20a%20travelling%20wave%20to%20investigate%20the%20response%20of%20the%20wind%20field%20to%20an%20impulsive%20wind%20speed%20increase%20or%20decrease.%20It%20is%20found%20that%20the%20turbulence%20fluctuations%20and%20the%20terms%20in%20the%20turbulent%20kinetic%20energy%20budget%20equation%20have%20a%20delayed%20response%20to%20the%20change%20in%20the%20mean%20flow%2C%20while%20the%20response%20of%20the%20wave-coherent%20motions%20is%20quasi-stationary.%20The%20wave-coherent%20motions%20are%20investigated%20quantitatively%20through%20comparison%20with%20a%20viscous%20curvilinear%20model%20developed%20by%20Cao%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20et%20al.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20J.%20Fluid%20Mech.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20vol.%20901%2C%202020%2C%20A27%29%20and%20Cao%20%26%20Shen%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20J.%20Fluid%20Mech.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20vol.%20919%2C%202021%2C%20A38%29.%20We%20observe%20an%20asymmetric%20hysteresis%20between%20the%20growing%20wind%20and%20the%20decaying%20wind%20in%20the%20evolution%20of%20the%20form%20drag%20and%20the%20viscous%20drag.%20We%20find%20further%20that%20the%20variation%20of%20the%20wave%20growth%20rate%20during%20the%20wind%20gust%20is%20related%20closely%20to%20the%20contribution%20from%20the%20out-of-phase%20component%20of%20the%20vertical%20velocity.%20Our%20discoveries%20provide%20evidence%20for%20the%20necessity%20of%20improving%20non-equilibrium%20turbulence%20and%20wind%20input%20modelling%20to%20account%20for%20the%20wind%20gustiness%20effect%20in%20future%20studies.%22%2C%22date%22%3A%222022-09-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fjfm.2022.577%22%2C%22ISSN%22%3A%220022-1120%2C%201469-7645%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS0022112022005778%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A14%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22ZU4YW446%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20and%20Shen%22%2C%22parsedDate%22%3A%222022-06-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20A%20Novel%20Machine%20Learning%20Method%20for%20Accelerated%20Modeling%20of%20the%20Downwelling%20Irradiance%20Field%20in%20the%20Upper%20Ocean.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%2811%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL097769%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL097769%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Novel%20Machine%20Learning%20Method%20for%20Accelerated%20Modeling%20of%20the%20Downwelling%20Irradiance%20Field%20in%20the%20Upper%20Ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-06-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022GL097769%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022GL097769%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A14%3A46Z%22%7D%7D%2C%7B%22key%22%3A%222A5DK7AN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wu%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWu%2C%20J.%2C%20Ortiz%26%23x2010%3BSuslow%2C%20D.%20G.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Wang%2C%20Q.%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20A%20Model%20Sensitivity%20Study%20of%20Ocean%20Surface%20Wave%20Modulation%20Induced%20by%20Internal%20Waves.%20%3Ci%3EEarth%20and%20Space%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E9%3C%5C%2Fi%3E%2811%29%2C%20e2022EA002394.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022EA002394%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022EA002394%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Model%20Sensitivity%20Study%20of%20Ocean%20Surface%20Wave%20Modulation%20Induced%20by%20Internal%20Waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jie%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20G.%22%2C%22lastName%22%3A%22Ortiz%5Cu2010Suslow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qing%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Nonlinear%20internal%20waves%20are%20an%20upper%20ocean%20phenomenon%20that%20drives%20horizontal%20surface%20current%20gradients%2C%20which%20in%20turn%20modulate%20ocean%20surface%20waves.%20Under%20certain%20conditions%2C%20this%20wave%5Cu2010current%20interaction%20creates%20ocean%20surface%20roughness%20heterogeneity%2C%20in%20the%20form%20of%20alternating%20rough%5C%2Fsmooth%20bands.%20In%20this%20study%2C%20we%20investigate%20the%20sensitivity%20of%20the%20modulation%20effect%20to%20internal%20wave%20properties%20and%20develop%20sea%20states%20using%20simulations%20of%20individual%20internal%20wave%20solitons.%20We%20utilize%20a%20phased%5Cu2010resolved%20two%5Cu2010layer%20fluid%20model%20to%20capture%20the%20evolution%20of%20surface%20waves%20deterministically.%20We%20conduct%20extensive%20simulations%20with%20a%20wide%20range%20of%20parameters%2C%20including%20fluid%20layer%20density%20ratio%2C%20internal%20wave%20amplitude%2C%20and%20parametric%20wind%20speed.%20We%20use%20the%20ratio%20of%20the%20mean%20surface%20slope%20between%20the%20rough%20and%20smooth%20bands%2C%20which%20are%20identified%20in%20the%20simulated%20surface%20wave%20field%2C%20to%20systematically%20investigate%20their%20response%20to%20the%20internal%20wave%20forcing%20across%20all%20our%20simulation%20cases.%20Our%20results%20show%20that%2C%20among%20the%20internal%20wave%20parameters%2C%20the%20upper%5Cu2010lower%20layer%20density%20ratio%20causes%20the%20strongest%20surface%20heterogeneity.%20Spectral%20analysis%20of%20the%20surface%20wave%20elevation%20and%20slope%20variance%20reveals%20that%20the%20wavenumbers%20above%20the%20peak%20are%20most%20impacted.%20We%20demonstrate%20that%20accounting%20for%20the%20internal%20wave%5Cu2010induced%20modulation%20requires%20including%20wave%20steepness%20statistics%2C%20for%20example%2C%20when%20modeling%20air%5Cu2010sea%20exchange%20using%20a%20surface%20roughness%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20z%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20parameter.%20Currently%2C%20these%20statistics%20are%20not%20included%20in%20typically%20coupled%20modeling%20schemes%2C%20and%20these%20systems%20cannot%20account%20for%20the%20impact%20of%20internal%20waves%2C%20even%20if%20the%20solitary%20wave%20phenomena%20are%20resolved.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20existence%20of%20oceanic%20internal%20waves%20would%20induce%20a%20distinct%20wave%20slope%20change%20on%20the%20ocean%20surface.%20An%20advanced%20time%5Cu2010efficient%20model%20is%20used%20to%20simulate%20this%20phenomenon.%20This%20study%20conducts%20a%20series%20of%20numerical%20experiments%20to%20assess%20how%20the%20surface%20wave%20slopes%20change%20with%20the%20variations%20in%20the%20internal%20wave%20shape%2C%20the%20seawater%20density%2C%20and%20the%20wind%20speed.%20Their%20relationships%20are%20further%20explained%20by%20the%20fundamental%20mechanism%20of%20surface%20velocity%20distribution%20and%20length%20scales%20of%20surface%20waves.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20surface%20roughness%20change%20on%20the%20ocean%20surface%20induced%20by%20an%20internal%20wave%20is%20simulated%20using%20a%20two%5Cu2010layer%20fluid%20model%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Internal%20wave%5Cu2010induced%20surface%20response%20is%20quantified%20using%20a%20local%20slope%20index%20calculated%20across%20the%20heterogeneous%20surface%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Surface%20response%20is%20concentrated%20at%20wavenumbers%20higher%20than%20the%20peak%20surface%20wave%20and%20most%20sensitive%20to%20the%20sub%5Cu2010surface%20density%20gradient%22%2C%22date%22%3A%2211%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022EA002394%22%2C%22ISSN%22%3A%222333-5084%2C%202333-5084%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022EA002394%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222024-02-21T23%3A53%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22VXMITZ43%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Wu%2C%20J.%2C%20Rogers%2C%20J.%20S.%2C%20Fringer%2C%20O.%20B.%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20A%20high-order%20spectral%20method%20for%20effective%20simulation%20of%20surface%20waves%20interacting%20with%20an%20internal%20wave%20of%20large%20amplitude.%20%3Ci%3EOcean%20Modelling%3C%5C%2Fi%3E%2C%20%3Ci%3E173%3C%5C%2Fi%3E%2C%20101996.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ocemod.2022.101996%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ocemod.2022.101996%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20high-order%20spectral%20method%20for%20effective%20simulation%20of%20surface%20waves%20interacting%20with%20an%20internal%20wave%20of%20large%20amplitude%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jie%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justin%20S.%22%2C%22lastName%22%3A%22Rogers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oliver%20B.%22%2C%22lastName%22%3A%22Fringer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2205%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ocemod.2022.101996%22%2C%22ISSN%22%3A%2214635003%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1463500322000397%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A14%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22HKNQVUGI%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20and%20Shen%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20A%20data-driven%20analysis%20of%20inhomogeneous%20wave%20field%20based%20on%20two-dimensional%20Hilbert%26%23x2013%3BHuang%20transform.%20%3Ci%3EWave%20Motion%3C%5C%2Fi%3E%2C%20%3Ci%3E110%3C%5C%2Fi%3E%2C%20102896.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.wavemoti.2022.102896%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.wavemoti.2022.102896%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20data-driven%20analysis%20of%20inhomogeneous%20wave%20field%20based%20on%20two-dimensional%20Hilbert%5Cu2013Huang%20transform%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2203%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.wavemoti.2022.102896%22%2C%22ISSN%22%3A%2201652125%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0165212522000099%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22CNZL4KU7%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wu%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWu%2C%20J.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282022%29.%20An%20improved%20adjoint-based%20ocean%20wave%20reconstruction%20and%20prediction%20method.%20%3Ci%3EFlow%3C%5C%2Fi%3E%2C%20%3Ci%3E2%3C%5C%2Fi%3E%2C%20E2.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fflo.2021.19%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fflo.2021.19%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22An%20improved%20adjoint-based%20ocean%20wave%20reconstruction%20and%20prediction%20method%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jie%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22We%20propose%20an%20improved%20adjoint-based%20method%20for%20the%20reconstruction%20and%20prediction%20of%20the%20nonlinear%20wave%20field%20from%20coarse-resolution%20measurement%20data.%20We%20adopt%20the%20data%20assimilation%20framework%20using%20an%20adjoint%20equation%20to%20search%20for%20the%20optimal%20initial%20wave%20field%20to%20match%20the%20wave%20field%20simulation%20result%20at%20later%20times%20with%20the%20given%20measurement%20data.%20Compared%20with%20the%20conventional%20approach%20where%20the%20optimised%20initial%20surface%20elevation%20and%20velocity%20potential%20are%20independent%20of%20each%20other%2C%20our%20method%20features%20an%20additional%20constraint%20to%20dynamically%20connect%20these%20two%20control%20variables%20based%20on%20the%20dispersion%20relation%20of%20waves.%20The%20performance%20of%20our%20new%20method%20and%20the%20conventional%20method%20is%20assessed%20with%20the%20nonlinear%20wave%20data%20generated%20from%20phase-resolved%20nonlinear%20wave%20simulations%20using%20the%20high-order%20spectral%20method.%20We%20consider%20a%20variety%20of%20wave%20steepness%20and%20noise%20levels%20for%20the%20nonlinear%20irregular%20waves.%20It%20is%20found%20that%20the%20conventional%20method%20tends%20to%20overestimate%20the%20surface%20elevation%20in%20the%20high-frequency%20region%20and%20underestimate%20the%20velocity%20potential.%20In%20comparison%2C%20our%20new%20method%20shows%20significantly%20improved%20performance%20in%20the%20reconstruction%20and%20prediction%20of%20instantaneous%20surface%20elevation%2C%20surface%20velocity%20potential%20and%20high-order%20wave%20statistics%2C%20including%20the%20skewness%20and%20kurtosis.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fflo.2021.19%22%2C%22ISSN%22%3A%222633-4259%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS2633425921000192%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A14%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22LEZ3H98A%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20et%20al.%22%2C%22parsedDate%22%3A%222021-05-13%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Cao%2C%20T.%2C%20%26amp%3B%20Shen%2C%20L.%20%282021%29.%20Mechanistic%20study%20of%20shoaling%20effect%20on%20momentum%20transfer%20between%20turbulent%20flow%20and%20traveling%20wave%20using%20large-eddy%20simulation.%20%3Ci%3EPhysical%20Review%20Fluids%3C%5C%2Fi%3E%2C%20%3Ci%3E6%3C%5C%2Fi%3E%285%29%2C%20054608.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevFluids.6.054608%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevFluids.6.054608%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mechanistic%20study%20of%20shoaling%20effect%20on%20momentum%20transfer%20between%20turbulent%20flow%20and%20traveling%20wave%20using%20large-eddy%20simulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tao%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-5-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevFluids.6.054608%22%2C%22ISSN%22%3A%222469-990X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevFluids.6.054608%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A08Z%22%7D%7D%2C%7B%22key%22%3A%224ULNIVEH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222020-06-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20L.-H.%2C%20Zhang%2C%20W.-Y.%2C%20%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Huang%2C%20W.-X.%2C%20Shen%2C%20L.%2C%20Xu%2C%20C.-X.%2C%20%26amp%3B%20Zhang%2C%20Z.%20%282020%29.%20Surface%20wave%20effects%20on%20energy%20transfer%20in%20overlying%20turbulent%20flow.%20%3Ci%3EJournal%20of%20Fluid%20Mechanics%3C%5C%2Fi%3E%2C%20%3Ci%3E893%3C%5C%2Fi%3E%2C%20A21.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2020.246%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2020.246%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Surface%20wave%20effects%20on%20energy%20transfer%20in%20overlying%20turbulent%20flow%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li-Hao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wu-Yang%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei-Xi%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chun-Xiao%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhaoshun%22%2C%22lastName%22%3A%22Zhang%22%7D%5D%2C%22abstractNote%22%3A%22%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Phase-resolved%20wave%20simulation%20and%20direct%20numerical%20simulation%20of%20turbulence%20are%20performed%20to%20investigate%20the%20surface%20wave%20effects%20on%20the%20energy%20transfer%20in%20overlying%20turbulent%20flow.%20The%20JONSWAP%20spectrum%20is%20used%20to%20initialize%20a%20broadband%20wave%20field.%20The%20nonlinear%20wave%20field%20is%20simulated%20using%20a%20high-order%20spectral%20method%2C%20and%20the%20resultant%20wave%20surface%20provides%20the%20bottom%20boundary%20conditions%20for%20direct%20numerical%20simulation%20of%20the%20overlying%20turbulent%20flow.%20Two%20wave%20ages%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24c_%7Bp%7D%5C%2Fu_%7B%5C%5Cast%20%7D%3D2%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%2025%20are%20considered%2C%20corresponding%20to%20slow%20and%20fast%20wave%20fields%2C%20respectively%2C%20where%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24c_%7Bp%7D%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20denotes%20the%20celerity%20of%20the%20peak%20wave%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24u_%7B%5C%5Cast%20%7D%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20denotes%20the%20friction%20velocity.%20The%20energy%20transfer%20of%20turbulent%20motions%20in%20the%20presence%20of%20surface%20waves%20is%20investigated%20through%20the%20spectral%20analysis%20of%20the%20two-point%20correlation%20transport%20equation.%20It%20is%20found%20that%20the%20production%20term%20has%20an%20extra%20peak%20at%20the%20dominant%20wavelength%20scale%20in%20the%20vicinity%20of%20the%20surface%2C%20and%20the%20energy%20transported%20to%20the%20surface%20via%20viscous%20and%20spatial%20turbulent%20transport%20is%20enhanced%20in%20the%20region%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24y%5E%7B%2B%7D%3C10%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20The%20presence%20of%20surface%20waves%20results%20in%20an%20inverse%20turbulent%20energy%20cascade%20in%20the%20near-surface%20region%2C%20where%20small-scale%20wave-related%20motions%20transfer%20energy%20back%20to%20the%20dominant%20wavelength%20scale.%20Pressure-related%20terms%20reflecting%20the%20spatial%20and%20inter-component%20energy%20transfer%20are%20strongly%20dependent%20on%20the%20wave%20age.%20Furthermore%2C%20triadic%20interaction%20analysis%20reveals%20that%20the%20energy%20influx%20at%20the%20dominant%20wavelength%20scale%20is%20due%20to%20the%20contribution%20of%20the%20neighbouring%20streamwise%20turbulent%20motions%2C%20and%20those%20at%20the%20harmonic%20wavelength%20scales%20contribute%20the%20most.%22%2C%22date%22%3A%222020-06-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fjfm.2020.246%22%2C%22ISSN%22%3A%220022-1120%2C%201469-7645%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS0022112020002463%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A16Z%22%7D%7D%2C%7B%22key%22%3A%22JILFEWN4%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20and%20Shen%22%2C%22parsedDate%22%3A%222020-05-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282020%29.%20Direct%20simulation%20of%20surface%20roughness%20signature%20of%20internal%20wave%20with%20deterministic%20energy-conservative%20model.%20%3Ci%3EJournal%20of%20Fluid%20Mechanics%3C%5C%2Fi%3E%2C%20%3Ci%3E891%3C%5C%2Fi%3E%2C%20R3.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2020.200%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2020.200%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Direct%20simulation%20of%20surface%20roughness%20signature%20of%20internal%20wave%20with%20deterministic%20energy-conservative%20model%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20simulation-based%20study%2C%20we%20investigate%20the%20surface%20roughness%20signature%20induced%20by%20internal%20solitary%20waves%20in%20oceans.%20We%20present%20the%20first-ever%20effort%20to%20directly%20capture%20the%20surface%20roughness%20signature%20with%20a%20deterministic%20two-layer%20model%20to%20avoid%20the%20singularity%20encountered%20in%20the%20traditional%20wave%5Cu2013current%20interaction%20theory.%20By%20capturing%20over%20four%20million%20wave%20components%2C%20the%20simulation%20resolves%20the%20surface%20wave%20and%20internal%20wave%20dynamics%20simultaneously.%20The%20surface%20signature%20characterized%20by%20a%20rough%20region%20followed%20by%20a%20smooth%20region%20travelling%20with%20an%20internal%20wave%20is%20quantified%20by%20the%20local%20wave%20geometry%20variation%20and%20the%20wave%20energy%20change.%20The%20surface%20wave%20dynamics%20are%20analysed%20in%20the%20wavenumber%5Cu2013frequency%20slope%20spectrum%20calculated%20in%20the%20frame%20moving%20with%20the%20internal%20wave.%20The%20asymmetric%20behaviours%20of%20right-moving%20and%20left-moving%20surface%20waves%20are%20found%20to%20contribute%20to%20the%20surface%20signature%20formation.%20Our%20results%20show%20that%20the%20formation%20of%20the%20surface%20signature%20is%20essentially%20an%20energy-conservative%20process%20and%20justify%20the%20use%20of%20the%20wave-phase-resolved%20two-layer%20model.%22%2C%22date%22%3A%222020-05-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fjfm.2020.200%22%2C%22ISSN%22%3A%220022-1120%2C%201469-7645%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS0022112020002001%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22FPKV4WJZ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20and%20Shen%22%2C%22parsedDate%22%3A%222019-09-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Shen%2C%20L.%20%282019%29.%20Wind%26%23x2013%3Bwave%20coupling%20study%20using%20LES%20of%20wind%20and%20phase-resolved%20simulation%20of%20nonlinear%20waves.%20%3Ci%3EJournal%20of%20Fluid%20Mechanics%3C%5C%2Fi%3E%2C%20%3Ci%3E874%3C%5C%2Fi%3E%2C%20391%26%23x2013%3B425.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2019.444%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjfm.2019.444%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wind%5Cu2013wave%20coupling%20study%20using%20LES%20of%20wind%20and%20phase-resolved%20simulation%20of%20nonlinear%20waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20study%20on%20the%20interaction%20between%20wind%20and%20water%20waves%20with%20a%20broad-band%20spectrum%20using%20wave-phase-resolved%20simulation%20with%20long-term%20wave%20field%20evolution.%20The%20wind%20turbulence%20is%20computed%20using%20large-eddy%20simulation%20and%20the%20wave%20field%20is%20simulated%20using%20a%20high-order%20spectral%20method.%20Numerical%20experiments%20are%20carried%20out%20for%20turbulent%20wind%20blowing%20over%20a%20wave%20field%20initialised%20using%20the%20Joint%20North%20Sea%20Wave%20Project%20spectrum%2C%20with%20various%20wind%20speeds%20considered.%20The%20results%20show%20that%20the%20waves%2C%20together%20with%20the%20mean%20wind%20flow%20and%20large%20turbulent%20eddies%2C%20have%20a%20significant%20impact%20on%20the%20wavenumber%5Cu2013frequency%20spectrum%20of%20the%20wind%20turbulence.%20It%20is%20found%20that%20the%20shear%20stress%20contributed%20by%20sweep%20events%20in%20turbulent%20wind%20is%20greatly%20enhanced%20as%20a%20result%20of%20the%20waves.%20The%20dependence%20of%20the%20wave%20growth%20rate%20on%20the%20wave%20age%20is%20consistent%20with%20the%20results%20in%20the%20literature.%20The%20probability%20density%20function%20and%20high-order%20statistics%20of%20the%20wave%20surface%20elevation%20deviate%20from%20the%20Gaussian%20distribution%2C%20manifesting%20the%20nonlinearity%20of%20the%20wave%20field.%20The%20shape%20of%20the%20change%20in%20the%20spectrum%20of%20wind-waves%20resembles%20that%20of%20the%20nonlinear%20wave%5Cu2013wave%20interactions%2C%20indicating%20the%20dominant%20role%20played%20by%20the%20nonlinear%20interactions%20in%20the%20evolution%20of%20the%20wave%20spectrum.%20The%20frequency%20downshift%20phenomenon%20is%20captured%20in%20our%20simulations%20wherein%20the%20wind-forced%20wave%20field%20evolves%20for%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24O%283000%29%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20peak%20wave%20periods.%20Using%20the%20numerical%20result%2C%20we%20compute%20the%20universal%20constant%20in%20a%20wave-growth%20law%20proposed%20in%20the%20literature%2C%20and%20substantiate%20the%20scaling%20of%20wind%5Cu2013wave%20growth%20based%20on%20intrinsic%20wave%20properties.%22%2C%22date%22%3A%222019-09-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fjfm.2019.444%22%2C%22ISSN%22%3A%220022-1120%2C%201469-7645%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS0022112019004440%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22ZJ9NFCBM%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Li%2C%20T.%2C%20Cao%2C%20T.%2C%20%26amp%3B%20Shen%2C%20L.%20%282019%29.%20Simulation-based%20study%20of%20wind%26%23x2014%3Bwave%20interactions%20under%20various%20sea%20conditions.%20%3Ci%3EJournal%20of%20Hydrodynamics%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%286%29%2C%201148%26%23x2013%3B1152.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs42241-019-0088-z%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs42241-019-0088-z%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Simulation-based%20study%20of%20wind%5Cu2014wave%20interactions%20under%20various%20sea%20conditions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tianyi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tao%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs42241-019-0088-z%22%2C%22ISSN%22%3A%221001-6058%2C%201878-0342%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs42241-019-0088-z%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22BCWTWT49%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hao%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EHao%2C%20X.%3C%5C%2Fstrong%3E%2C%20Cao%2C%20T.%2C%20Yang%2C%20Z.%2C%20Li%2C%20T.%2C%20%26amp%3B%20Shen%2C%20L.%20%282018%29.%20Simulation-based%20study%20of%20wind-wave%20interaction.%20%3Ci%3EProcedia%20IUTAM%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2C%20162%26%23x2013%3B173.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.piutam.2018.03.016%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.piutam.2018.03.016%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Simulation-based%20study%20of%20wind-wave%20interaction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuanting%22%2C%22lastName%22%3A%22Hao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tao%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zixuan%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tianyi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lian%22%2C%22lastName%22%3A%22Shen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.piutam.2018.03.016%22%2C%22ISSN%22%3A%2222109838%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2210983818300166%22%2C%22collections%22%3A%5B%22I6QB6LWB%22%5D%2C%22dateModified%22%3A%222022-10-11T21%3A15%3A44Z%22%7D%7D%5D%7D
Hao, X. (2024). Quantifying Bioluminescent Light Intensity in Breaking Waves Using Numerical Simulations. Geophysical Research Letters, 51(20), e2024GL110884. https://doi.org/10.1029/2024GL110884
Wu, J., Hao, X., Li, T., & Shen, L. (2023). Adjoint-based high-order spectral method of wave simulation for coastal bathymetry reconstruction. Journal of Fluid Mechanics, 972, A41. https://doi.org/10.1017/jfm.2023.733
Zhang, Z., Hao, X., Santoni, C., Shen, L., Sotiropoulos, F., & Khosronejad, A. (2023). Toward prediction of turbulent atmospheric flows over propagating oceanic waves via machine-learning augmented large-eddy simulation. Ocean Engineering, 280, 114759. https://doi.org/10.1016/j.oceaneng.2023.114759
Yue, L., Hao, X., Shen, L., & Fringer, O. B. (2023). Direct Simulation of the Surface Manifestation of Internal Gravity Waves with a Wave–Current Interaction Model. Journal of Physical Oceanography, 53(4), 981–993. https://doi.org/10.1175/JPO-D-22-0097.1
Hao, X., & Shen, L. (2022). Large-eddy simulation of gusty wind turbulence over a travelling wave. Journal of Fluid Mechanics, 946, A8. https://doi.org/10.1017/jfm.2022.577
Hao, X., & Shen, L. (2022). A Novel Machine Learning Method for Accelerated Modeling of the Downwelling Irradiance Field in the Upper Ocean. Geophysical Research Letters, 49(11). https://doi.org/10.1029/2022GL097769
Wu, J., Ortiz‐Suslow, D. G., Hao, X., Wang, Q., & Shen, L. (2022). A Model Sensitivity Study of Ocean Surface Wave Modulation Induced by Internal Waves. Earth and Space Science, 9(11), e2022EA002394. https://doi.org/10.1029/2022EA002394
Hao, X., Wu, J., Rogers, J. S., Fringer, O. B., & Shen, L. (2022). A high-order spectral method for effective simulation of surface waves interacting with an internal wave of large amplitude. Ocean Modelling, 173, 101996. https://doi.org/10.1016/j.ocemod.2022.101996
Hao, X., & Shen, L. (2022). A data-driven analysis of inhomogeneous wave field based on two-dimensional Hilbert–Huang transform. Wave Motion, 110, 102896. https://doi.org/10.1016/j.wavemoti.2022.102896
Wu, J., Hao, X., & Shen, L. (2022). An improved adjoint-based ocean wave reconstruction and prediction method. Flow, 2, E2. https://doi.org/10.1017/flo.2021.19
Hao, X., Cao, T., & Shen, L. (2021). Mechanistic study of shoaling effect on momentum transfer between turbulent flow and traveling wave using large-eddy simulation. Physical Review Fluids, 6(5), 054608. https://doi.org/10.1103/PhysRevFluids.6.054608
Wang, L.-H., Zhang, W.-Y., Hao, X., Huang, W.-X., Shen, L., Xu, C.-X., & Zhang, Z. (2020). Surface wave effects on energy transfer in overlying turbulent flow. Journal of Fluid Mechanics, 893, A21. https://doi.org/10.1017/jfm.2020.246
Hao, X., & Shen, L. (2020). Direct simulation of surface roughness signature of internal wave with deterministic energy-conservative model. Journal of Fluid Mechanics, 891, R3. https://doi.org/10.1017/jfm.2020.200
Hao, X., & Shen, L. (2019). Wind–wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves. Journal of Fluid Mechanics, 874, 391–425. https://doi.org/10.1017/jfm.2019.444
Hao, X., Li, T., Cao, T., & Shen, L. (2019). Simulation-based study of wind—wave interactions under various sea conditions. Journal of Hydrodynamics, 31(6), 1148–1152. https://doi.org/10.1007/s42241-019-0088-z
Hao, X., Cao, T., Yang, Z., Li, T., & Shen, L. (2018). Simulation-based study of wind-wave interaction. Procedia IUTAM, 26, 162–173. https://doi.org/10.1016/j.piutam.2018.03.016